1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/// Macro for implementing (de-)serialization via serde in common cases
///
/// # Using the macro
/// The macro provides implementations for `Serialize` and `Deserialize` for various kinds or
/// data types. The macro syntax tries to stay as close as possible to the declaration of the
/// data type.
/// To use the macro, `serde` must be imported by either `use serde;` or `extern crate serde;`.
///
/// ## (De-)Serializing `struct`s as maps
///
/// To deserialize a struct data type as a map, it must implement the `Default` trait so that
/// missing struct fields still have a value. The macro syntax for this case is:
///
/// ```ignore
/// serde_impl!($name($ktype) {
///    $fname: $ftype => $fkey,
///    ...
/// });
/// ```
///
/// where
///
/// * `$name` is the name of the type to be implemented.
/// * `$ktype` is the type for the keys in the mapping.
/// * `$fname` is the name of a field (on the struct in Rust).
/// * `$ftype` is the type of a field.
/// * `$fkey` is the field key in the map (in serialized form).
///
/// ### Example
///
/// ```ignore
/// #[derive(Default)]
/// struct Test {
///     test: String,
///     num: u64,
///     option: Option<bool>,
/// }
/// serde_impl!(Test(String) {
///     test: String => "test",
///     num: u64 => "num",
///     option: Option<bool> => "option"
/// });
/// ```
///
/// Note that the `$ktype` must be an *owned type* corresponding to the used field keys,
/// i.e. `String` instead of `&str` in this example.
///
/// It is also possible to use numeric field keys (when the serialization supports it, JSON does not).
///
/// ### Example
///
/// ```ignore
/// #[derive(Default)]
/// struct Test {
///     test: String,
///     num: u64,
///     option: Option<bool>,
/// }
/// serde_impl!(Test(u64) {
///     test: String => 0,
///     num: u64 => 1,
///     option: Option<bool> => 2
/// });
/// ```
///
/// When deserializing data, the generated implementation will silently ignore all extra fields
/// and use the default value for all missing fields.
///
///
/// ### Compressed maps
///
/// By adding a question mark after the key type the serialization will make sure to omit map
/// entries containing the default value. During serialization, the default value will be set on
/// all omitted fields.
///
/// ```ignore
/// serde_impl!(Test(String?) {
///     test: String => "test",
///     num: u64 => "num",
///     option: Option<bool> => "option"
/// });
/// ```
///
///
/// ## (De-)Serializing `struct`s as tuples
///
/// It is also possible to (de-)serialize structs as tuples containing all the fields in order.
/// The macro syntax for this case is:
///
/// ```ignore
/// serde_impl!($name {
///    $fname: $ftype,
///    ...
/// });
/// ```
///
/// where
///
/// * `$name` is the name of the type to be implemented.
/// * `$fname` is the name of a field (on the struct in Rust).
/// * `$ftype` is the type of a field.
///
/// ### Example
///
/// ```ignore
/// struct Test {
///     test: String,
///     num: u64,
///     option: Option<bool>,
/// }
/// serde_impl!(Test {
///     test: String,
///     num: u64,
///     option: Option<bool>
/// });
/// ```
///
/// The syntax basically just omits the *key type* and the *field keys* as no keys are used.
/// The fields will just be (de-)serialized in order as a tuple.
/// When derserializing a tuple as such a data struct, any missing or extra fields will be treated
/// as an error. Therefore, the struct does not need to implement `Default`.
///
/// ## (De-)Serializing simple `enums`s
///
/// (De-)serializing enums that do not have parameters, just maps the variants to and from a
/// serializable data type. The syntax in this case is:
///
/// ```ignore
/// serde_impl!($name($ktype) {
///    $variant => $fkey,
///    ...
/// });
/// ```
///
/// where
///
/// * `$name` is the name of the type to be implemented.
/// * `$ktype` is the type for the serialized enum variants.
/// * `$variant` is the name of a variant (on the enum in Rust).
/// * `$fkey` is the key for a variant in serialized from.
///
/// ### Example
///
/// ```ignore
/// enum Test {
///     A, B, C
/// }
/// serde_impl!(Test(String) {
///     A => "a",
///     B => "b",
///     C => "c"
/// });
/// ```
///
/// Note that the `$ktype` must be an *owned type* corresponding to the used variant keys,
/// i.e. `String` instead of `&str` in this example.
///
/// It is also possible to use numeric variant keys.
///
/// ### Example
///
/// ```ignore
/// enum Test {
///     A, B, C
/// }
/// serde_impl!(Test(u64) {
///     A => 0,
///     B => 1,
///     C => 2
/// });
/// ```
///
/// ## (De-)Serializing `enums`s with one parameter
///
/// It is also possible to (de-)serialize enums with **exactly one** parameter.
/// The syntax in this case is:
///
/// ```ignore
/// serde_impl!($name($ktype) {
///    $variant($ftype) => $fkey,
///    ...
/// });
/// ```
///
/// where
///
/// * `$name` is the name of the type to be implemented.
/// * `$ktype` is the type for the serialized enum variants.
/// * `$variant` is the name of a variant (on the enum in Rust).
/// * `$ftype` is the type of the variant parameter.
/// * `$fkey` is the key for a variant in serialized from.
///
/// ### Example
///
/// ```ignore
/// enum Test {
///     A(u64), B(String), C(bool)
/// }
/// serde_impl!(Test(String) {
///     A(u64) => "a",
///     B(String) => "b",
///     C(bool) => "c"
/// });
/// ```
///
/// Note that the `$ktype` must be an *owned type* corresponding to the used variant keys,
/// i.e. `String` instead of `&str` in this example.
///
/// It is also possible to use numeric variant keys.
///
/// ### Example
///
/// ```ignore
/// enum Test {
///     A(u64), B(String), C(bool)
/// }
/// serde_impl!(Test(u64) {
///     A(u64) => 0,
///     B(String) => 1,
///     C(bool) => 2
/// });
/// ```
///
/// The limitation to one parameter can be circumvented by wrapping multiple parameters in a tuple:
///
/// ```
/// enum Test {
///    None(()),
///    Single(String),
///    Multiple((u64, bool))
/// }
/// ```
///
/// instead of
///
/// ```
/// enum Test {
///    None,
///    Single(String),
///    Multiple(u64, bool)
/// }
/// ```
///
/// ## Limitations
/// The following things do not work, and most likely will never work:
///
/// * Data types with lifetimes
/// * Parametrized data types
/// * Enums with multiple parameters
/// * Enums where different variants have different parameter counts
/// * Enums with field names
/// * Tuple structs
/// * More fancy key types than String and numeric types might not work
#[macro_export]
macro_rules! serde_impl(
    // Serde impl for struct $name($ktype?) { $fname: $ftype } as map
    ( $name:ident($ktype:ident?) { $( $fname:ident : $ftype:ty => $fkey:expr ),+ } ) => {
        impl ::serde::Serialize for $name {
            fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> {
                use ::serde::ser::SerializeMap;
                let default: $name = Default::default();
                let mut len = 0;
                $(
                    if self.$fname != default.$fname {
                        len += 1;
                    }
                )*
                let mut state = try!(ser.serialize_map(Some(len)));
                $(
                    if self.$fname != default.$fname {
                        try!(state.serialize_entry(&$fkey, &self.$fname));
                    }
                )*
                state.end()
            }
        }
        impl<'a> ::serde::Deserialize<'a> for $name {
            fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> {
                use serde_utils::Obj as _DummyObjToSkipUnknownFields;
                struct _Deserializer;
                impl<'a> ::serde::de::Visitor<'a> for _Deserializer {
                    type Value = $name;
                    fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                        write!(formatter, "map")
                    }

                    fn visit_map<V: ::serde::de::MapAccess<'a>>(self, mut visitor: V) -> Result<Self::Value, V::Error> {
                        let mut obj: $name = Default::default();
                        while let Some(key) = try!(visitor.next_key::<$ktype>()) {
                            $(
                                if key == $fkey {
                                    obj.$fname = try!(visitor.next_value());
                                    continue
                                }
                            )*
                            let _skip: _DummyObjToSkipUnknownFields = try!(visitor.next_value());
                        }
                        Ok(obj)
                    }
                }
                Ok(try!(de.deserialize_map(_Deserializer)))
            }
        }
    };
    // Serde impl for struct $name($ktype) { $fname: $ftype } as map
    ( $name:ident($ktype:ident) { $( $fname:ident : $ftype:ty => $fkey:expr ),+ } ) => {
        impl ::serde::Serialize for $name {
            fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> {
                use ::serde::ser::SerializeMap;
                let mut state = try!(ser.serialize_map(Some( [ $( $fkey ),+ ].len() )));
                $(
                    try!(state.serialize_entry(&$fkey, &self.$fname));
                )*
                state.end()
            }
        }
        impl<'a> ::serde::Deserialize<'a> for $name {
            fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> {
                use serde_utils::Obj as _DummyObjToSkipUnknownFields;
                struct _Deserializer;
                impl<'a> ::serde::de::Visitor<'a> for _Deserializer {
                    type Value = $name;
                    fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                        write!(formatter, "map")
                    }

                    fn visit_map<V: ::serde::de::MapAccess<'a>>(self, mut visitor: V) -> Result<Self::Value, V::Error> {
                        let mut obj: $name = Default::default();
                        while let Some(key) = try!(visitor.next_key::<$ktype>()) {
                            $(
                                if key == $fkey {
                                    obj.$fname = try!(visitor.next_value());
                                    continue
                                }
                            )*
                            let _skip: _DummyObjToSkipUnknownFields = try!(visitor.next_value());
                        }
                        Ok(obj)
                    }
                }
                Ok(try!(de.deserialize_map(_Deserializer)))
            }
        }
    };
    // Serde impl for struct $name { $fname: $ftype } as tuple
    ( $name:ident { $( $fname:ident : $ftype:ty ),+ } ) => {
        impl ::serde::Serialize for $name {
            #[inline]
            fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> {
                ($( &self.$fname ),*).serialize(ser)
            }
        }
        impl<'a> ::serde::Deserialize<'a> for $name {
            #[inline]
            fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> {
                type T = ( $($ftype),* );
                T::deserialize(de).map(|( $($fname),* )| $name { $( $fname: $fname ),* })
            }
        }
    };
    // Serde impl for enum $name { $variant }
    ( $name:ident($ktype:ident) { $( $variant:ident => $fkey:expr ),+ } ) => {
        impl ::serde::Serialize for $name {
            fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> {
                match self {
                    $( &$name::$variant => $fkey ),*
                }.serialize(ser)
            }
        }
        impl<'a> ::serde::Deserialize<'a> for $name {
            fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> {
                use ::serde::de::Error as _DummyErrorJustToUseTrait;
                let key = try!($ktype::deserialize(de));
                $(
                    if key == $fkey {
                        return Ok($name::$variant);
                    }
                )*
                Err(D::Error::custom("Invalid enum discriminator"))
            }
        }
    };
    // Serde impl for enum $name { $variant($ftype) }
    ( $name:ident($ktype:ident) { $( $variant:ident($ftype:ty) => $fkey:expr ),* } ) => {
        impl ::serde::Serialize for $name {
            #[inline]
            fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> {
                match self {
                    $( &$name::$variant(ref obj) => ($fkey, obj).serialize(ser) ),*
                }
            }
        }
        impl<'a> ::serde::Deserialize<'a> for $name {
            #[inline]
            fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> {
                struct _Deserializer;
                impl<'a> ::serde::de::Visitor<'a> for _Deserializer {
                    type Value = $name;
                    fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                        write!(formatter, "list")
                    }
                    fn visit_seq<V: ::serde::de::SeqAccess<'a>>(self, mut visitor: V) -> Result<$name, V::Error> {
                        use ::serde::de::Error as _DummyErrorJustToUseTrait;
                        let key: $ktype = try!(try!(visitor.next_element()).ok_or(V::Error::custom("Enums must be encoded as tuples")));
                        $(
                            if key == $fkey {
                                return Ok($name::$variant(try!(try!(visitor.next_element()).ok_or(V::Error::custom("Enums must be encoded as tuples")))));
                            }
                        )*
                        Err(V::Error::custom("Invalid enum discriminator"))
                    }
                }
                de.deserialize_tuple(2, _Deserializer)
            }
        }
    };
);