1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
/// Macro for implementing (de-)serialization via serde in common cases /// /// # Using the macro /// The macro provides implementations for `Serialize` and `Deserialize` for various kinds or /// data types. The macro syntax tries to stay as close as possible to the declaration of the /// data type. /// To use the macro, `serde` must be imported by either `use serde;` or `extern crate serde;`. /// /// ## (De-)Serializing `struct`s as maps /// /// To deserialize a struct data type as a map, it must implement the `Default` trait so that /// missing struct fields still have a value. The macro syntax for this case is: /// /// ```ignore /// serde_impl!($name($ktype) { /// $fname: $ftype => $fkey, /// ... /// }); /// ``` /// /// where /// /// * `$name` is the name of the type to be implemented. /// * `$ktype` is the type for the keys in the mapping. /// * `$fname` is the name of a field (on the struct in Rust). /// * `$ftype` is the type of a field. /// * `$fkey` is the field key in the map (in serialized form). /// /// ### Example /// /// ```ignore /// #[derive(Default)] /// struct Test { /// test: String, /// num: u64, /// option: Option<bool>, /// } /// serde_impl!(Test(String) { /// test: String => "test", /// num: u64 => "num", /// option: Option<bool> => "option" /// }); /// ``` /// /// Note that the `$ktype` must be an *owned type* corresponding to the used field keys, /// i.e. `String` instead of `&str` in this example. /// /// It is also possible to use numeric field keys (when the serialization supports it, JSON does not). /// /// ### Example /// /// ```ignore /// #[derive(Default)] /// struct Test { /// test: String, /// num: u64, /// option: Option<bool>, /// } /// serde_impl!(Test(u64) { /// test: String => 0, /// num: u64 => 1, /// option: Option<bool> => 2 /// }); /// ``` /// /// When deserializing data, the generated implementation will silently ignore all extra fields /// and use the default value for all missing fields. /// /// /// ### Compressed maps /// /// By adding a question mark after the key type the serialization will make sure to omit map /// entries containing the default value. During serialization, the default value will be set on /// all omitted fields. /// /// ```ignore /// serde_impl!(Test(String?) { /// test: String => "test", /// num: u64 => "num", /// option: Option<bool> => "option" /// }); /// ``` /// /// /// ## (De-)Serializing `struct`s as tuples /// /// It is also possible to (de-)serialize structs as tuples containing all the fields in order. /// The macro syntax for this case is: /// /// ```ignore /// serde_impl!($name { /// $fname: $ftype, /// ... /// }); /// ``` /// /// where /// /// * `$name` is the name of the type to be implemented. /// * `$fname` is the name of a field (on the struct in Rust). /// * `$ftype` is the type of a field. /// /// ### Example /// /// ```ignore /// struct Test { /// test: String, /// num: u64, /// option: Option<bool>, /// } /// serde_impl!(Test { /// test: String, /// num: u64, /// option: Option<bool> /// }); /// ``` /// /// The syntax basically just omits the *key type* and the *field keys* as no keys are used. /// The fields will just be (de-)serialized in order as a tuple. /// When derserializing a tuple as such a data struct, any missing or extra fields will be treated /// as an error. Therefore, the struct does not need to implement `Default`. /// /// ## (De-)Serializing simple `enums`s /// /// (De-)serializing enums that do not have parameters, just maps the variants to and from a /// serializable data type. The syntax in this case is: /// /// ```ignore /// serde_impl!($name($ktype) { /// $variant => $fkey, /// ... /// }); /// ``` /// /// where /// /// * `$name` is the name of the type to be implemented. /// * `$ktype` is the type for the serialized enum variants. /// * `$variant` is the name of a variant (on the enum in Rust). /// * `$fkey` is the key for a variant in serialized from. /// /// ### Example /// /// ```ignore /// enum Test { /// A, B, C /// } /// serde_impl!(Test(String) { /// A => "a", /// B => "b", /// C => "c" /// }); /// ``` /// /// Note that the `$ktype` must be an *owned type* corresponding to the used variant keys, /// i.e. `String` instead of `&str` in this example. /// /// It is also possible to use numeric variant keys. /// /// ### Example /// /// ```ignore /// enum Test { /// A, B, C /// } /// serde_impl!(Test(u64) { /// A => 0, /// B => 1, /// C => 2 /// }); /// ``` /// /// ## (De-)Serializing `enums`s with one parameter /// /// It is also possible to (de-)serialize enums with **exactly one** parameter. /// The syntax in this case is: /// /// ```ignore /// serde_impl!($name($ktype) { /// $variant($ftype) => $fkey, /// ... /// }); /// ``` /// /// where /// /// * `$name` is the name of the type to be implemented. /// * `$ktype` is the type for the serialized enum variants. /// * `$variant` is the name of a variant (on the enum in Rust). /// * `$ftype` is the type of the variant parameter. /// * `$fkey` is the key for a variant in serialized from. /// /// ### Example /// /// ```ignore /// enum Test { /// A(u64), B(String), C(bool) /// } /// serde_impl!(Test(String) { /// A(u64) => "a", /// B(String) => "b", /// C(bool) => "c" /// }); /// ``` /// /// Note that the `$ktype` must be an *owned type* corresponding to the used variant keys, /// i.e. `String` instead of `&str` in this example. /// /// It is also possible to use numeric variant keys. /// /// ### Example /// /// ```ignore /// enum Test { /// A(u64), B(String), C(bool) /// } /// serde_impl!(Test(u64) { /// A(u64) => 0, /// B(String) => 1, /// C(bool) => 2 /// }); /// ``` /// /// The limitation to one parameter can be circumvented by wrapping multiple parameters in a tuple: /// /// ``` /// enum Test { /// None(()), /// Single(String), /// Multiple((u64, bool)) /// } /// ``` /// /// instead of /// /// ``` /// enum Test { /// None, /// Single(String), /// Multiple(u64, bool) /// } /// ``` /// /// ## Limitations /// The following things do not work, and most likely will never work: /// /// * Data types with lifetimes /// * Parametrized data types /// * Enums with multiple parameters /// * Enums where different variants have different parameter counts /// * Enums with field names /// * Tuple structs /// * More fancy key types than String and numeric types might not work #[macro_export] macro_rules! serde_impl( // Serde impl for struct $name($ktype?) { $fname: $ftype } as map ( $name:ident($ktype:ident?) { $( $fname:ident : $ftype:ty => $fkey:expr ),+ } ) => { impl ::serde::Serialize for $name { fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> { use ::serde::ser::SerializeMap; let default: $name = Default::default(); let mut len = 0; $( if self.$fname != default.$fname { len += 1; } )* let mut state = try!(ser.serialize_map(Some(len))); $( if self.$fname != default.$fname { try!(state.serialize_entry(&$fkey, &self.$fname)); } )* state.end() } } impl<'a> ::serde::Deserialize<'a> for $name { fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> { use serde_utils::Obj as _DummyObjToSkipUnknownFields; struct _Deserializer; impl<'a> ::serde::de::Visitor<'a> for _Deserializer { type Value = $name; fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { write!(formatter, "map") } fn visit_map<V: ::serde::de::MapAccess<'a>>(self, mut visitor: V) -> Result<Self::Value, V::Error> { let mut obj: $name = Default::default(); while let Some(key) = try!(visitor.next_key::<$ktype>()) { $( if key == $fkey { obj.$fname = try!(visitor.next_value()); continue } )* let _skip: _DummyObjToSkipUnknownFields = try!(visitor.next_value()); } Ok(obj) } } Ok(try!(de.deserialize_map(_Deserializer))) } } }; // Serde impl for struct $name($ktype) { $fname: $ftype } as map ( $name:ident($ktype:ident) { $( $fname:ident : $ftype:ty => $fkey:expr ),+ } ) => { impl ::serde::Serialize for $name { fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> { use ::serde::ser::SerializeMap; let mut state = try!(ser.serialize_map(Some( [ $( $fkey ),+ ].len() ))); $( try!(state.serialize_entry(&$fkey, &self.$fname)); )* state.end() } } impl<'a> ::serde::Deserialize<'a> for $name { fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> { use serde_utils::Obj as _DummyObjToSkipUnknownFields; struct _Deserializer; impl<'a> ::serde::de::Visitor<'a> for _Deserializer { type Value = $name; fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { write!(formatter, "map") } fn visit_map<V: ::serde::de::MapAccess<'a>>(self, mut visitor: V) -> Result<Self::Value, V::Error> { let mut obj: $name = Default::default(); while let Some(key) = try!(visitor.next_key::<$ktype>()) { $( if key == $fkey { obj.$fname = try!(visitor.next_value()); continue } )* let _skip: _DummyObjToSkipUnknownFields = try!(visitor.next_value()); } Ok(obj) } } Ok(try!(de.deserialize_map(_Deserializer))) } } }; // Serde impl for struct $name { $fname: $ftype } as tuple ( $name:ident { $( $fname:ident : $ftype:ty ),+ } ) => { impl ::serde::Serialize for $name { #[inline] fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> { ($( &self.$fname ),*).serialize(ser) } } impl<'a> ::serde::Deserialize<'a> for $name { #[inline] fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> { type T = ( $($ftype),* ); T::deserialize(de).map(|( $($fname),* )| $name { $( $fname: $fname ),* }) } } }; // Serde impl for enum $name { $variant } ( $name:ident($ktype:ident) { $( $variant:ident => $fkey:expr ),+ } ) => { impl ::serde::Serialize for $name { fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> { match self { $( &$name::$variant => $fkey ),* }.serialize(ser) } } impl<'a> ::serde::Deserialize<'a> for $name { fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> { use ::serde::de::Error as _DummyErrorJustToUseTrait; let key = try!($ktype::deserialize(de)); $( if key == $fkey { return Ok($name::$variant); } )* Err(D::Error::custom("Invalid enum discriminator")) } } }; // Serde impl for enum $name { $variant($ftype) } ( $name:ident($ktype:ident) { $( $variant:ident($ftype:ty) => $fkey:expr ),* } ) => { impl ::serde::Serialize for $name { #[inline] fn serialize<S: ::serde::Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> { match self { $( &$name::$variant(ref obj) => ($fkey, obj).serialize(ser) ),* } } } impl<'a> ::serde::Deserialize<'a> for $name { #[inline] fn deserialize<D: ::serde::Deserializer<'a>>(de: D) -> Result<Self, D::Error> { struct _Deserializer; impl<'a> ::serde::de::Visitor<'a> for _Deserializer { type Value = $name; fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { write!(formatter, "list") } fn visit_seq<V: ::serde::de::SeqAccess<'a>>(self, mut visitor: V) -> Result<$name, V::Error> { use ::serde::de::Error as _DummyErrorJustToUseTrait; let key: $ktype = try!(try!(visitor.next_element()).ok_or(V::Error::custom("Enums must be encoded as tuples"))); $( if key == $fkey { return Ok($name::$variant(try!(try!(visitor.next_element()).ok_or(V::Error::custom("Enums must be encoded as tuples"))))); } )* Err(V::Error::custom("Invalid enum discriminator")) } } de.deserialize_tuple(2, _Deserializer) } } }; );