

a network experimentation tool

SPONSORED BY THE

Federal Ministry of Education and Research

Dennis Schwerdel University of Kaiserslautern, ICSY Lab

Overview

- Introduction
- ► ToMaTo
 - Architecture
 - Devices
 - Connectors
 - Features
 - Editor

Evaluation

- National future-internet research project
 - Funded by BMBF
 - Phase 1: One big project, 6 partner universities
 - Phase 2: Multiple small projects, some more partners (also industry)
- Integrated with an experimental facility
 - Facility users and providers are the same people
 - Experimental facility providers form special interest group
 - 180+ nodes in total
 - Mostly at 6 phase 1 sites
 - Some special equipment from phase 2
 - No layer-2 connectivity
- Currently closed platform
 - MoUs
 - Federation plans (esp. GENI)
 - Commercialization planned after end of phase 1

Introduction

- Why experimental facilities?
 - Helps designing, testing and improving network algorithms, applications and architectures
 - Instrument for networking research
- Existing experimental facilities
 - Planet-Lab
 - High node numbers \rightarrow allows large experiments
 - Uses container virtualization \rightarrow limited hardware and kernel access
 - Shared network interfaces \rightarrow no network topologies
 - Emulab
 - No virtualization \rightarrow full hardware and kernel access, inefficient
 - Realized as cluster \rightarrow full control over network topology
 - Seattle
 - Very high node numbers \rightarrow allows large experiments
 - Uses virtual python interpreter \rightarrow no operating system access
 - Only custom python dialect \rightarrow not suitable for all experiments

ТоМаТо

- ToMaTo: "Topology Managenemt Tool"
- Topology contains
 - Devices
 - Connectors
- Devices
 - Active components
 - E.g. computers
 - Produce/Consume data
- Connectors
 - Networking components
 - E.g. switches, routers
 - Transport/Manipulate data

ToMaTo - Architecture

- ToMaTo contains 3 parts
- Host part
 - Based on PROXMOX VE
 - Offers virtualization
 - All additional software available as packages
- Backend
 - Controls hosts via SSH
 - Centralized logic, resource management, user accounts
 - Offers XML RPC interface
- Frontend(s)
 - Offer a GUI to users
 - Currently only a web-based interface exists
 - More frontends possible

- ► KVM
 - Full virtualization
 - Offers full access
- OpenVZ
 - Container virtualization
 - Lightweight, uses less resources
 - Easier to access
- Templates
 - Preinstalled device images, ready to use
 - Current versions of Debian and Ubuntu Linux (32 and 64 bits)
 - FreeBSD (only KVM)

ToMaTo - Connectors

- Tinc VPN
 - Creates private networks between devices
 - Not encrypted → good performance
 - Hub, Switch or Router semantics
- External networks
 - Connect devices to host bridges
 - Can connect devices to the Internet
 - Openflow integration
- Link emulation
 - Only available for Tinc VPN
 - Can set additional QoS limitations on links
 - Packet loss
 - Bandwidth limit
 - Latency
 - Long-term statistics help users to estimate underlying link properties

ToMaTo - Features

- Administrator/Developer features
 - Intelligent load-balancing
 - Open xml-rpc interface
 - Administrator tools
 - LDAP integration
- User features
 - Automatic network interface configuration
 - Changes to running topologies
 - Console access
 - Image up/download
 - Pcap capturing

Evaluation

- Methodology
 - Identify network experiment classes
 - Evaluate ToMaTo support for these classes
- Access layer experiments
- Network layer experiments
- Algorithm/Protocol experiments
- Legacy software experiments

Evaluation - Access layer experiments

- Topic: lower layers and hardware
 - Example: Mobile handover
- Requirements
 - Hardware access
 - Custom operating systems (Realtime)
 - Heterogeneous access technologies (3G, Wifi, etc.)
 - Complex setup, depending on hardware type
- Needs specialized testbeds depending on hardware
 - DES Testbed, Wisebed
- Not supported in ToMaTo

Evaluation - Network layer experiments

- ► Topic: TCP/IP suite
 - Example: IPv6 extensions, TCP substitutes
- Requirements
 - Deep OS access (modified kernels, etc.)
 - Small but complex topologies, link emulation
- ToMaTo offers
 - Full kernel access via KVM
 - Complex topologies
 - Link emulation
 - Packet capturing (for analysis)
 - Easy setup of topologies

Evaluation - Algorithm/Protocol experiments

- Work on top of network layer
 - Example: P2P-Networks
- Requirements
 - Huge but simple topologies
 - Link emulation
 - No hardware or OS access
- ToMaTo offers
 - Lightweight virtualization with OpenVZ (250 devices per host)
 - Link emulation
 - Ability to connect to other testbeds via Internet
 - Up/download of images (simplifies setup of multiple devices)

- Topic: legacy software
 - "Legacy software" refers to any widespread software with undocumented or unpublished behavior
 - Example: Skype and Windows
- Requirements
 - Special environments, custom operating systems
 - Access to external services
 - Small but complex topologies
 - Link emulation and external packet capturing
- ToMaTo offers
 - Custom operating systems with KVM (even Windows and BSD run)
 - Acces to external service via Internet connector
 - Packet capturing independent of guest OS

ToMaTo Summary

- Flexible and extensible
 - 3-tier architecture
 - Openflow integration
- Efficient
 - As much access as needed (KVM)
 - As less resource usage as possible (OpenVZ)
- Easy to use
 - Graphical editor, topology creator
 - Automatic interface configuration
- Supports experiments
 - Ready-to-use templates
 - Link emulation
 - Image download/upload
 - Packet capturing
 - Direct console access

Thank you

The G-Lab Experimental Facility

